Chemical Engineering Thermodynamics Quiz 4 February 4, 2021

Benzyl alcohol (BnOH) has a high index of refraction close to that of silica, cotton and wool so that if a cotton ball or fumed silica powder are immersed in BnOH they become almost invisible. It is also used as an antiseptic and as a flavor enhancing food additive as well as use as a treatment for head lice strangely enough. BnOH is made from toluene (which is a direct fraction from petroleum refining) via BnCl. BnCl is boiled in water in the presence of potassium carbonate (10%) under reflux. The reaction is run to 30% conversion to avoid chlorination of the aromatic group. BnOH is purified by flash distillation from a fraction at 474 K.

	Ть, К	ΔH_v , kJ/mole	$\Delta_{ m f} {\sf H}_0$ (I), kJ/mole	Cp (I), J/(mole K)
BnCl (l)	335	48.6	-33	A = 182; B = C = D = 0
BnOH (I)	478	63	-164	A = 218; B= C = D = 0
K ₂ CO ₃ (I)			-1,130	A = 209; B = -1.63e-7; C = 8.01e-8; D = -1.34e-8
Water (I)	373	40.7	-285	A = 72.4; B = 0.0104; C = -1.49e-6; D = 0
HCI (g)			-92.3	A = 30.7; B = -0.0072; C = 1.25e-5; D = -3.90e-9

- a) Write a balanced reaction for this synthesis.
- b) Make a table of the moles feeding into the reactor and the moles flowing out of the reactor for each of the five species *using as a basis a total of one mole for the feed stream*. The reaction feed is 62 mole percent water/K₂CO₃ mixture with a 90/10 molar ratio. The reaction is run to 30% completion.
- c) Use the heat of formation method for the energy balance to **determine the heating or cooling** that is required for this reaction per mole of the feed stream. The feed temperature is 298 K, the reaction temperature is 374 K. Assume the reactor is adiabatic. Is the reaction **endothermic or exothermic** under these conditions?
- d) The products are separated in a flash tank from a mixture of water, BnOH, BnCl at 201°C (474 K)) by distillation. The feed stream is liquid with 54 mole % water, 14 mole % BnOH, and 32 mole % BnCl at 320 K. The liquid stream exiting the flash distillation, B, is 99% BnOH; the vapor stream, V, is 1 % BnOH and both streams are at 474 K. Make a table of the mole fractions and moles of the three components in the three streams of the flash tank. Assume that the ratio of BnCl to water in streams B and V is the same as in stream F. Use as a basis one mole for the sum of the components in F.
- e) Find the heat load for the separation (kJ/mole of the feed stream, F). Is this an endothermic or exothermic process?

ANSWER SHEET:

For the answers please fill out the following answer sheet below and send a pdf of the excel sheet printed in landscape.

- a) Balance Equation:
- b) Table in Excel Sheet pdf.
- c) Heating or Cooling Required:

Endo or exothermic?

- d) Table in Excel Sheet pdf.
- e) Heat Load:

Endo or exothermic?

You can **use the attached excel sheet** to do your calculations. Please **write down all equations** that you use in the Excel sheet on your work sheet and turn it in with the quiz.

D C, 11, C(+H, 0 = C, H, 0+HC/ Xwah/Kg = 0,62 X = 0,88 (b) × wate = 0.9 (0.62) = 0.558 $X_{K_1CC_3}^{F} = 0.1(0.02) = 0.062$ NBn(1 = 1 wele 0.38 = 0.38 moles n F = 0 1 wolf = 0,558 mels $n_{\varphi_{c}}^{k} = 0$ NF = 0,002 mels Concusion of Ballis 30% N^{Predult} = 0.38° and 4. 0.70 = 0.266 mdles BARI change is 0.38° ad -0.200 al = 0.114 Madel = 0.114 mels n = 0.119 usly his = 0.062 moly churloy ad Nwal = 0.558 mly - 0,119ml = 0.444 mly Foodisat 2926 To Sport=0 Feed Entholy is E (SH) . NF. for reortally PLOW Fully is Elatton P. + N. S CodT) Total = Prodo/ - Feed = 16.4 KT/one nole Ford 296K End Endo Hrimi

$$\begin{array}{l} \textcircledleft \hline \label{eq:starter} \\ \textcircledleft \hline \label{eq:starter} \\ \textcircledleft \hline \label{eq:starter} \\ \hline \label{eq:starter} F = U + B = I \ \mbox{malg} = 0.79 \ \mbox{B} + 0.01 \ \mbox{C} \ \mbox$$

uiz 4, 2021		_																	
alculate Cp I	ntegrals								J/mole	kJ/mole	К	kJ/mole			Joules	Joules	kJ	kJ	
									Ср						Moles in *	Moles Out *			
									integral,	DH	T boiling,	DH	Moles	Moles	Cp integral	Cp integral	Moles in	Moles out	
_	Material	Ti, K	Tf, K	4	4	В	С	D	J/mole	formation	К	Vaporization	in	out	(298->Tin)	(298->Tout)	* DfH0	* DfH0	Material
	BnCl (l)	298	(T)	374	182	0	0	0	13832	-33	335	49	0.38	0.266	0	3679	-12.5	-8.8	BnCl
	BnOH (I)	298	(T)	374	218	0	0	0	16568	-164	478	63	0	0.114	0	1889	0.0	-18.7	BnOH
	K2O3 (I)	298	(T)	374	209	-1.63E-07	8.01E-08	-1.34E-08	15846	-1130			0.062	0.062	0	982	-70.1	-70.1	K2O3
	H2O (I)	298	(T)	374	72.4	0.0104	-1.49E-06	0.00E+00	5755	-285	373	40.7	0.558	0.444	0	2555	-159.0	-126.5	H2O
	HCl (g)	298	(T)	374	30.7	-0.0072	1.25E-05	-3.90E-09	2246	-92.3			0	0.114	0	256	0.0	-10.5	HCI
														Sums:	0	9362	-242	-235	

Heat of Formation per mole feed Q load

Qbar 16.4 kJ

							moles	moles	moles	
Separation		Temp,	Moles	xBNOH	xBNC	xWater	nBNOH	nBNCl	nWater	
	L, Feed	320	1	0.14	0.32	0.54	0.140	0.320	0.540	L, Feed
	V	474	0.867	0.01	0.368	0.622	0.009	0.319	0.539	V
	В	474	0.133	0.99	0.004	0.006	0.132	0.001	0.001	В

kJ Vapor Stream (V)

		L320->LTb	LTb->VTb	VTb->V474	Sum*mole	s		ть, к
	BNOH	34.4	63.0	-0.9	0.8		BNOH	478
	BNC	2.7	49.0	25.3	24.6		BNCI	335
	Water	4.0	40.7	7.7	28.3		Water	373
				Sum	53.7			
kJ	B Strea	ım (L)						
			Value *					
		L320->L474	moles					
	BNOH	33.6	4.42					
	BNCI	28.0	0.01					
	Water	11.7	0.01					
		Sum	4.45		Take Liquid	d at 320K as	the refere	nce state
					Q/mole			
					of L	58.1	kJ/mole L	feed

	Tb, K		DHv, kJ/mo	le
BNOH		478	63	
BNCI		335	49	
Water		373	40.7	

You need to type in equations and values to do the proper calculations

in the green boxes